
 

Find Duplicate Images using AppsScript 
 

Intro 

Using the Reference Design 

Expected Behavior and How It Works 

Part One - the creation of the checksum/digest value 

Part Two - An Appsheet report which identifies duplicate images and marks them as such 

 

NOTE: This is not an official Google Product or solution 

 

Intro 
Appsheet allows you to upload the same image (or file) over and over again, and the 
system will mark each image with a unique filename, e.g. something like the following: 

 

 

This is all by design and expected behavior. Customers who desire to identify exactly 
identical images can use this document and its reference implementation to build a 
solution that marks images as duplicates for future deletion or archiving purposes. 

 

Using the Reference Design 
This reference design requires some familiarity with Google AppsScript. A summary of the steps 
required to explore and study this reference design: 

● Copy the sample Appsheet app ​located here​ into your Appsheet account. 

 

https://www.appsheet.com/samples/Uses-apps-script-to-identity-duplicate-images-uploaded-via-Appsheet?appGuidString=1aa9850d-7e49-41ca-ba4b-851bdd6a4747


 

● Immediately open Google Drive and locate the folder where this app and its content was 
deployed to. Find the Google Sheet called “Google Doc”, open it, then go to the Tools menu 
and choose “Script Editor”. 

● Copy the AppsScript script located ​in this gist​ into the script editor.  
● You will need to make one single change: the FolderID of the location where these apps’ images 

are uploaded to. 
● Set up a trigger for this script: it should run on all changes to the Google Sheet, e.g: 

 

● In the above image, we called our script “GoogleDocManagementScripts”. Yours can be named 
whatever you like. 

● Save your work and test using the Appsheet app. 

 

Expected Behavior and How It Works 
 

Part One - the creation of the checksum/digest value 
 

 

https://gist.github.com/northwestcoder/935003fa48706a5c7149ee36ceb1a41b


 

Open the Appsheet app. Notice that you create a new record and upload an image (or 
take a photo on your smartphone): 

 

 

Go ahead and do this twice using the same exact image. If you configured your AppsScript 
script correctly, it will run each time you add a record to the sheet, and then it will: 

 

● Insert the Google Drive File ID back into your Google Sheet 
● Run the AppsScript utility function called ​computeDigest​ on the image and return a 

checksum/string back into your Google Sheet, e.g.: 

 

https://developers.google.com/apps-script/reference/utilities/utilities#computeDigest(DigestAlgorithm,String,Charset)


 

 

 

 

● Interesting side note: the reason we have to call “computeDigest” is because although 
the Google Drive API has a built in checksum method, Google AppsScript does not 
expose this method. Instead in our code we have to: 

○ Get the image from Google Drive 
○ Represent it as a byte array 
○ Run ​computeDigest​ on this byte array 
○ Take the result of the previous step and convert any negative values to positive 

values 
○ Return this final string - this is our “checksum” or file “digest”. 

 

Part Two - An Appsheet report which identifies duplicate images and 
marks them as such 
 

● Now, back in the app, take note of an Appsheet Report called “Check Data for Dupes”. 
This is meant to run once a day or weekly for ​each row in the table​. 

● Also note in the app, on the upper left menu, a user defined choice: should we keep the 
newest file as the non-dupe, or, should we keep the oldest file as the non-dupe? 

 

● You can manually run the report at any time using the UX and designer. You should 
upload some deliberate duplicate images to test.  

● Some very clever query logic is in the condition field for this report: 

 

AND 

( 

 

https://developers.google.com/apps-script/reference/utilities/utilities#computeDigest(DigestAlgorithm,String,Charset)


 

[PossibleDupe] <> "DUPE", 

count(select(Google Doc[Key],[Checksum] = [_THISROW].[Checksum])) > 1, 

if(any(globals[KeepNewestOrOldestFile]) = "Keep Oldest File", 

[Key] <> MINROW("Google Doc","CreationDate",[Checksum] = [_THISROW].[Checksum]), 

[Key] <> MAXROW("Google Doc","CreationDate",[Checksum] = [_THISROW].[Checksum]) 

) 

) 

 

● The above is an expensive query - on thousands and thousands of records it might 
take a little while. This is why we have built it as an Appsheet Report as opposed to 
marking a field or table with this same logic. 

● When you run the report, it will find the duplicate images and mark the PossibleDupe 
column with “DUPE” by calling a series of Appsheet actions,  

● E.g. here are the actions we call: 

 

 

● And here is the Google Sheet output after the report has run: 

 

 



 

 

 

If you are paying close attention, you will note that we are also copying these DUPE records to 
a separate Google Sheet called “Deletion Requests”. This is so that you, the designer, can now 
take further action on these files. 

 

From here, you can start to “do something” such as remove these records, or iterate through 
the image content, removing the images as desired. Quite deliberately, we have ​not​ included 
any deletion activities or destructive examples in this reference design, as we are not in the 
business of making it easy to delete our customers’ content. 

 


